Celastrols as inducers of the heat shock response and cytoprotection.
نویسندگان
چکیده
Alterations in protein folding and the regulation of conformational states have become increasingly important to the functionality of key molecules in signaling, cell growth, and cell death. Molecular chaperones, because of their properties in protein quality control, afford conformational flexibility to proteins and serve to integrate stress-signaling events that influence aging and a range of diseases including cancer, cystic fibrosis, amyloidoses, and neurodegenerative diseases. We describe here characteristics of celastrol, a quinone methide triterpene and an active component from Chinese herbal medicine identified in a screen of bioactive small molecules that activates the human heat shock response. From a structure/function examination, the celastrol structure is remarkably specific and activates heat shock transcription factor 1 (HSF1) with kinetics similar to those of heat stress, as determined by the induction of HSF1 DNA binding, hyperphosphorylation of HSF1, and expression of chaperone genes. Celastrol can activate heat shock gene transcription synergistically with other stresses and exhibits cytoprotection against subsequent exposures to other forms of lethal cell stress. These results suggest that celastrols exhibit promise as a new class of pharmacologically active regulators of the heat shock response.
منابع مشابه
Resveratrol induces the heat-shock response and protects human cells from severe heat stress.
Molecular chaperones play key roles in protein quality control, signal transduction, proliferation, and cell death, and confer cytoprotection and assure survival after environmental stress. The heat-shock response is implicated in a variety of conditions including ischemic diseases, infection and immunity, neurodegeneration, and aging. Physiologic and pharmacologic chaperone inducers were shown...
متن کاملCelastrol analogues as inducers of the heat shock response. Design and synthesis of affinity probes for the identification of protein targets.
The natural product celastrol (1) possesses numerous beneficial therapeutic properties and affects numerous cellular pathways. The mechanism of action and cellular target(s) of celastrol, however, remain unresolved. While a number of studies have proposed that the activity of celastrol is mediated through reaction with cysteine residues, these observations have been based on studies with specif...
متن کاملImplications of heat shock/stress proteins for medicine and disease.
Heat shock/stress proteins (HSPs) are crucial for maintenance of cellular homeostasis during normal cell growth and for survival during and after various cellular stresses. The HSP70 family functions as molecular chaperones and reduces stress-induced denaturation and aggregation of intracellular proteins. In addition to the chaperoning activities, HSP70 has been suggested to exert its protectiv...
متن کاملHeat Shock Protein-70 Inducers and iNOS Inhibitors as Therapeutics to Ameliorate Hemorrhagic Shock
Hemorrhagic shock is the principal cause of death of soldiers in the battlefield. Although the underlying mechanisms are still not fully understood, it has been shown that nitric oxide (NO) overproduction and inducible nitric oxide synthase (iNOS) overexpression play important roles in producing injury caused by hemorrhagic shock. In addition, polymorphonuclear neutrophils (PMN) infiltrate inju...
متن کاملNew insights into TRAP1 pathway.
Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1) is a mitochondrial heat shock protein involved in the protection from DNA damages and apoptosis induced by oxidants and several other stress conditions. Despite the well-characterized role in the regulation of mitochondrial integrity, through the interaction with cyclophilin D, a mitochondrial permeability transition pore regulator, se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 53 شماره
صفحات -
تاریخ انتشار 2004